

Land Subsidence along the Delta-Mendota Canal in the Northern Part of the San Joaquin Valley, California

Michelle Sneed California Water Science Center U.S. Geological Survey March 26, 2014

http://ca.water.usgs.gov/projects/central-valley/delta-mendota-canal.html

Summary

- ▶ 1,200 mi² area subsided ½-11 inches/year during 2008-10; surveys indicate these rates have continued through 2013
- Adversely affecting water conveyances and other infrastructure
 - Delta-Mendota Canal, California Aqueduct, Eastside Bypass, San Joaquin River, local canals
- Subsidence is largely permanent
- Subsidence occurred when groundwater levels declined to historically low levels as a result of pumping
- Recent subsidence has shifted about 25 mi northeast from historical (1926-70) maximum
- ► Long-term monitoring of water levels and subsidence is needed to detect and track groundwater conditions for decision support

Subsidence Damages Natural Resources and Infrastructure

- ► Flood Protection and Infrastructure
 - Damage to water conveyance systems and other infrastructure
 - Reduced conveyance capacity and freeboard, panel damage; water surface and liner misalignment; erosion/deposition in unlined channels
 - ► Roads, rails, bridges, pipelines, wells, etc.
- ► Natural resources
 - Reduces aquifer-system storage capacity
 - Impacts to wetland, riparian, and aquatic ecosystems
 - Restricted land uses

Impact on Infrastructure

Measuring Subsidence

Spirit Leveling

InSAR

Subsidence History

Extensive withdrawal of groundwater caused widespread subsidence (1920s-1970)

Surface-water deliveries caused widespread recovery and slowing or cessation of subsidence, except when deliveries were curtailed and groundwater pumping increased to meet demand

Recent Subsidence

- Renewed subsidence concern during 2007-09 drought, and now, the current drought
 - Reduced surface water importation
 - More reliance on the groundwater resources
 - As it turns out...this is not just a problem during droughts for some areas with little or no surface-water access

Federal, State, and Local Water Infrastructure in the Impacted Area

Francisco

Impacted Area

Detected Edges of Subsiding Area

science for a changing world

121°30′ 121° 120°30′ 120°

InSAR Subsidence Measurements: Maximum Subsidence Area near El Nido, between Eastside Bypass and San Joaquin River

Highest Impact: Adjacent to San Joaquin River and Eastside Bypass

Subsidence along the DMC

Water levels in the Shallow and Deep Systems Declined 2007-10

science for a changing world

Groundwater Levels Continue to Decline

GPS Subsidence Measurements

Historical Subsidence

Current Activity: Extensometers

- ➤ Oro Loma (16H2)
- Panoche (11D6)
- DWR Yard (33A1)
- Rasta (6D1)

Hourly measurements of aquifer-system compaction and groundwater levels

science for a changing world

Subsidence near Stockton

What Can Be Done About It?

- Focus on maintaining groundwater levels above historical low levels
 - Reduction of groundwater withdrawal
 - ► Decreasing groundwater demand
 - ► Limiting/redistributing groundwater use
 - ► Increasing supplemental water supply
 - Enhanced groundwater recharge
 - ► Artificial recharge: direct well injection or surface infiltration
 - ▶ Natural recharge: source protection
- Long-term monitoring of water levels and subsidence is needed to detect and track groundwater conditions for decision support

Thanks!

http://ca.water.usgs.gov/projects /central-valley/delta-mendotacanal.html

